The Crystal Structure of MoO₃,2H₂O: a Metal Aquoxide with Both Co-ordinated and Hydrate Water¹

By Bernt Krebs

(Anorganisch-Chemisches Institut der Universität, Göttingen, Germany)

Summary In the crystal structure of $MoO_3, 2H_2O$ one half of the water molecules are co-ordinated to Mo within $[MoO_3(OH_2)]_n$ layers, the other half form hydrogenbonded hydrate water between the layers.

FROM the determination of approximate Mo parameters in a crystallographic sub-cell, Lindqvist² has shown the structural principle of molybdenum trioxide dihydrate ("yellow molybdic acid") to be an arrangement of layers of MoO_6 octahedra with sharing corners. The correct structure, including the true unit cell, space group, oxygen

FIGURE. Crystal structure of $MoO_3, 2H_2O$: projection parallel to b of one of the two layers in the unit cell (layer centred at y = 0.25) Black circles: Mo. Large open circles: hydrate H_2O (at approx. y = 0 and y = 0.50). Small open circles: H_2O , co-ordinated to Mo.

co-ordinates, and functions of the water molecules^{3,4} is of considerable interest, but has not been obtained previously.

I report the results of the complete X-ray structure determination. Pure single crystals were obtained according to the method of Carpéni.⁵

 $MoO_3, 2H_2O$ crystallizes in the space group $P2_1/n$ (No. 14) with a = 10.476(5), b = 13.822(6), c = 10.606(5) Å, $\beta = 91.62(3)^{\circ}$, U = 1535.3 Å³, $D_m = 3.124$, $D_c = 3.114$ g/cm³ (all at 20°) and Z = 16.[†] About 3500 unique nonzero intensities were recorded on a Hilger-Watts four-circle diffractometer with Mo- K_{α} radiation. The structure was solved from Patterson and Fourier methods, and refined by least squares to an R factor of 6.0% with anisotropic temperature factors for Mo, including contributions from calculated H positions. All hydrogen atoms could be located unambiguously from a difference Fourier synthesis.

The structure consists of a system of infinite $[MoO_3(OH_2)]_n$ layers normal to b. Five oxygens and one co-ordinated H_2O form a strongly distorted octahedron around every Mo. Every octahedron shares a corner with each of four neighbouring octahedra within the layers. The octahedra form characteristic zig-zag rows within the layers. The distribution of the co-ordinated H_2O groups in "terminal" positions over both sides of the layers is shown in the Figure.

The most striking feature of the structure is the occurence of a second kind of H_2O groups not bonded to Mo which fill the voids between the layers. They are in H-bonding contact with both neighbouring layers. Thus, the compound should be formulated as $[MoO_{4/2}O(OH_2)], H_2O =$ $[MoO_3(OH_2)], H_2O$, molybdenum hydratotrioxide hydrate. The structure can be regarded as a "partially hydrolysed" ReO₃ type.

In the strongly distorted $MoO_5(OH_2)$ octahedra the central Mo is displaced from the centre roughly parallel to

† This cell is obtained from Lindqvist's incorrect cell^{2b} by transformation with the matrix $(\frac{1}{2}, 0, \frac{1}{2}|0, 1, 0| - \frac{1}{2}, 0, \frac{1}{2})$.

one of the threefold axes, resulting in three short and three long bond distances. Mean values are 1.690 (terminal O), 1.762, 1.798, 2.056, 2.159, and 2.293 Å (H_2O). This kind of distortion has recently been found in some other oxides and oxide hydrates of Mo and Re [the Mo₄O₁₁ modifications⁶, Re₂O₇,⁷ Re₂O₇(OH₂)₂⁸] and appears to be more common in compounds of these elements with ReO₃ structure fragments than was expected.^{9,10} Nonbonded $O-O(H_2O)$ distances in the octahedra range from 2.60 to 2.87 Å, cis-bond angles at the Mo from 75.4 to 104.3° . Closest Mo-Mo separations within the layers range from 3.620 to 3.818 Å with Mo-O-Mo bridge angles of 139.7-161.4°. As in the compounds cited above⁶⁻⁸ the M-O-M bridges are strongly asymmetric with alternating long (>2 Å) and short M--O bond lengths.

The very interesting hydrogen bond system connects every interlayer H_aO as H-donor with one terminal oxygen. and as H-acceptor both with one co-ordinated H₂O in one neighbouring layer and with a second H₂O in the opposite layer. The H-bridges are normal with $O \cdots HO$ distances of 2.693-2.841 Å. Every co-ordinated H₂O is, as donor, in H-bridging contact with two inter-layer H₂O groups. The interatomic angles between pairs of three oxygens associated with the H-bridges (83-119°) and the approximate OH \cdots O bond angles (160 \pm 15°) show the bridges to be slightly bent.

From the crystal structure the relatively easy conversion of MoO₃, 2H₂O into stoicheiometric MoO₃, H₂O by moderate heating can be rationalized: if the hydrogen-bond system breaks down by loss of the inter-layer water, easy stabilisation of the intact layer arrangement is possible by shifting every second layer a/4 and c/4.

In a note which appeared after I described the structure,¹ cell constants of MoO₃,2H₂O are reported.¹¹ These values are in excellent agreement with ours.

I thank Prof. Dr. O. Glemser for generous support of this work.

(Received November 7th, 1969; Com. 1694.)

¹ B. Krebs, presented at the VIIIth International Congress of Crystallography, Stony Brook, N.Y., August, 1969; Abstract: Acta Cryst., 1969, 25, A, Suppl., 104.

- ² I. Lindqvist, Acta Chem. Scand., (a), 1950, 4, 650; (b) 1956, 10, 1362.
 ³ O. Glemser, Angew. Chem., 1961, 73, 785.
- ⁴ S. Maričić and J. A. S. Smith, J. Chem. Soc., 1958, 886; Acta Chem. Scand., 1956, 10, 1362.
 ⁵ G. Carpéni, Bull. Soc. chim. France, 1947, 484.
- ⁶ L. Kihlborg, Arkiv Kemi, 1963, 21, 365.
- ⁷ B. Krebs, A. Müller, and H. Beyer, Inorg. Chem., 1969, 8, 436.
- ⁸ H. Beyer, O. Glemser, and B. Krebs, Angew. Chem., 1968, 80, 286; Angew. Chem. Internat. Edn., 1968, 7, 295.
- ⁹ A. Magnéli, J. Inorg. Nuclear Chem., 1956, 2, 330.
- ¹⁰ L. Kihlborg, Arkiv Kemi, 1963, 21, 471.
 ¹¹ S. Åsbrink, B. Brandt, and P. Kierkegaard, Acta Chem. Scand., 1969, 23, 2196.