The Crystal Structure of $\mathrm{MoO}_{3}, 2 \mathrm{H}_{2} \mathrm{O}$: a Metal Aquoxide with Both Co-ordinated and Hydrate Water ${ }^{1}$

By Bernt Krebs
(Anorganisch-Chemisches Institut der Universität, Göttingen, Germany)

Summary In the crystal structure of $\mathrm{MoO}_{3}, 2 \mathrm{H}_{2} \mathrm{O}$ one half of the water molecules are co-ordinated to Mo within $\left[\mathrm{MoO}_{3}\left(\mathrm{OH}_{2}\right)\right]_{n}$ layers, the other half form hydrogenbonded hydrate water between the layers.

From the determination of approximate Mo parameters in a crystallographic sub-cell, Lindqvist ${ }^{2}$ has shown the structural principle of molybdenum trioxide dihydrate ('yellow molybdic acid') to be an arrangement of layers of MoO_{6} octahedra with sharing corners. The correct structure, including the true unit cell, space group, oxygen

Figure. Crystal structure of $\mathrm{MoO}_{3}, 2 \mathrm{H}_{2} \mathrm{O}$: projection parallel to b of one of the two layers in the unit cell (layer centred at $\mathrm{y}=0.25$) Black circles: Mo. Large open circles: hydrate $\mathrm{H}_{2} \mathrm{O}$ (at approx. $\mathrm{y}=0$ and $\mathrm{y}=0.50$). Small open circles: $\mathrm{H}_{2} \mathrm{O}$, co-ordinated to Mo.
co-ordinates, and functions of the water molecules ${ }^{\mathbf{3}, 4}$ is of considerable interest, but has not been obtained previously.

I report the results of the complete X-ray structure determination. Pure single crystals were obtained according to the method of Carpéni. ${ }^{5}$
$\mathrm{MoO}_{3}, 2 \mathrm{H}_{2} \mathrm{O}$ crystallizes in the space group $P 2_{1} / n$ (No. 14) with $a=10 \cdot 476(5), b=13 \cdot 822(6), c=10 \cdot 606(5) \AA$, $\beta=91 \cdot 62(3)^{\circ}, \quad U=1535 \cdot 3 \AA^{3}, \quad D_{\mathrm{m}}=3 \cdot 124, \quad D_{\mathrm{c}}=3 \cdot 114$ $\mathrm{g} / \mathrm{cm}^{3}$ (all at 20°) and $Z=16 . \dagger$ About 3500 unique nonzero intensities were recorded on a Hilger-Watts four-circle diffractometer with $\mathrm{Mo}-K_{\alpha}$ radiation. The structure was solved from Patterson and Fourier methods, and refined by least squares to an R factor of 6.0% with anisotropic temperature factors for Mo, including contributions from calculated H positions. All hydrogen atoms could be located unambiguously from a difference Fourier synthesis.

The structure consists of a system of infinite $\left[\mathrm{MoO}_{3}\left(\mathrm{OH}_{2}\right)\right]_{n}$ layers normal to b. Five oxygens and one co-ordinated $\mathrm{H}_{2} \mathrm{O}$ form a strongly distorted octahedron around every Mo. Every octahedron shares a corner with each of four neighbouring octahedra within the layers. The octahedra form characteristic zig-zag rows within the layers. The distribution of the co-ordinated $\mathrm{H}_{2} \mathrm{O}$ groups in "terminal" positions over both sides of the layers is shown in the Figure.

The most striking feature of the structure is the occurence of a second kind of $\mathrm{H}_{2} \mathrm{O}$ groups not bonded to Mo which fill the voids between the layers. They are in H-bonding contact with both neighbouring layers. Thus, the compound should be formulated as $\left[\mathrm{MoO}_{4 / 2} \mathrm{O}\left(\mathrm{OH}_{2}\right)\right], \mathrm{H}_{2} \mathrm{O}=$ $\left[\mathrm{MoO}_{3}\left(\mathrm{OH}_{2}\right)\right], \mathrm{H}_{2} \mathrm{O}$, molybdenum hydratotrioxide hydrate. The structure can be regarded as a "partially hydrolysed" ReO_{3} type.

In the strongly distorted $\mathrm{MoO}_{5}\left(\mathrm{OH}_{2}\right)$ octahedra the central Mo is displaced from the centre roughly parallel to
\dagger This cell is obtained from Lindqvist's incorrect cell ${ }^{2 b}$ by transformation with the matrix $\left(\frac{1}{2}, 0, \frac{1}{2}|0,1,0|-\frac{1}{2}, 0, \frac{1}{2}\right)$.
one of the threefold axes, resulting in three short and three long bond distances. Mean values are $1 \cdot 690$ (terminal O), $1 \cdot 762,1 \cdot 798,2.056,2.159$, and $2.293 \AA\left(\mathrm{H}_{2} \mathrm{O}\right)$. This kind of distortion has recently been found in some other oxides and oxide hydrates of Mo and Re [the $\mathrm{Mo}_{4} \mathrm{O}_{11}$ modifications ${ }^{6}$, $\left.\mathrm{Re}_{2} \mathrm{O}_{7},{ }^{7} \quad \mathrm{Re}_{2} \mathrm{O}_{7}\left(\mathrm{OH}_{2}\right)_{2}{ }^{8}\right]$ and appears to be more common in compounds of these elements with ReO_{3} structure fragments than was expected. ${ }^{9,10}$ Nonbonded $\mathrm{O}-\mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right)$ distances in the octahedra range from $2 \cdot 60$ to $2.87 \AA$, cis-bond angles at the Mo from $75 \cdot 4$ to $104 \cdot 3^{\circ}$. Closest Mo-Mo separations within the layers range from 3.620 to $3.818 \AA$ with $\mathrm{Mo}-\mathrm{O}-\mathrm{Mo}$ bridge angles of 139.7 $161 \cdot 4^{\circ}$. As in the compounds cited above ${ }^{6-8}$ the $\mathrm{M}-\mathrm{O}-\mathrm{M}$ bridges are strongly asymmetric with alternating long ($>2 \AA$) and short M-O bond lengths.

The very interesting hydrogen bond system connects every interlayer $\mathrm{H}_{2} \mathrm{O}$ as H -donor with one terminal oxygen, and as H -acceptor both with one co-ordinated $\mathrm{H}_{2} \mathrm{O}$ in one neighbouring layer and with a second $\mathrm{H}_{2} \mathrm{O}$ in the opposite
layer. The H-bridges are normal with $\mathrm{O} \cdot \mathrm{HO}$ distances of $2.693-2.841 \AA$. Every co-ordinated $\mathrm{H}_{2} \mathrm{O}$ is, as donor, in H -bridging contact with two inter-layer $\mathrm{H}_{2} \mathrm{O}$ groups. The interatomic angles between pairs of three oxygens associated with the H -bridges (83-119 ${ }^{\circ}$) and the approximate $\mathrm{OH} \cdots \mathrm{O}$ bond angles ($160 \pm 15^{\circ}$) show the bridges to be slightly bent.

From the crystal structure the relatively easy conversion of $\mathrm{MoO}_{3}, 2 \mathrm{H}_{2} \mathrm{O}$ into stoicheiometric $\mathrm{MoO}_{3}, \mathrm{H}_{2} \mathrm{O}$ by moderate heating can be rationalized: if the hydrogen-bond system breaks down by loss of the inter-layer water, easy stabilisation of the intact layer arrangement is possible by shifting every second layer $a / 4$ and $c / 4$.

In a note which appeared after I described the structure, ${ }^{1}$ cell constants of $\mathrm{MoO}_{3}, 2 \mathrm{H}_{2} \mathrm{O}$ are reported. ${ }^{11}$ These values are in excellent agreement with ours.

I thank Prof. Dr. O. Glemser for generous support of this work.
(Received November 7th, 1969; Com. 1694.)

[^0]
[^0]: ${ }^{1}$ B. Krebs, presented at the VIIIth International Congress of Crystallography, Stony Brook, N.Y., August, 1969; Abstract: Acta Cryst., 1969, 25, A, Suppl., 104.
 ${ }^{2}$ I. Lindqvist, Acta Chem. Scand., (a), 1950, 4, 650; (b) 1956, 10, 1362.
 ${ }^{3}$ O. Glemser, Angew. Chem., 1961, 73, 785.
 ${ }^{4}$ S. Maričić and J. A. S. Smith, J. Chem. Soc., 1958, 886; Acta Chem. Scand., 1956, 10, 1362.
 ${ }^{5}$ G. Carpéni, Bull. Soc. chim. France, 1947, 484.
 ${ }^{6}$ L. Kihlborg, Arkiv Kemi, 1963, 21, 365.
 7 B. Krebs, A. Müller, and H. Beyer, Inorg. Chem., 1969, 8, 436.
 ${ }^{8}$ H. Beyer, O. Glemser, and B. Krebs, Angew. Chem., 1968, 80, 286; Angew. Chem. Internat. Edn., 1968, 7, 295.
 ${ }^{9}$ A. Magnéli, J. Inorg. Nuclear Chem., 1956, 2, 330.
 ${ }^{10}$ L. Kihlborg, Arkiv Kemi, 1963, 21, 471.
 ${ }^{11}$ S. Asbrink, B. Brandt, and P. Kierkegaard, Acta Chem. Scand., 1969, 23, 2196.

